Unraveling the mechanisms underlying treatment response for targeted therapeutics in systemic lupus erythematosus (SLE) patients is challenging due to the limited understanding of diverse responses of circulating immune cells, particularly B cells. We investigated B lymphocyte dynamics during anti-BAFF treatment, utilizing longitudinal single-cell transcriptome data. We conducted single-cell RNA sequencing on PBMCs in four Korean SLE patients before and after belimumab treatment at the following time points: 2 weeks, 1, 3, 6, and 12 months. Analyzing over 73 000 PBMCs, we identified 8 distinct subsets of B cells and plasmablasts and analyzed dynamic changes within these cell subsets: initial declines in naive and transitional B cells followed by an increase at three months, contrasted by an initial increase and subsequent decrease in memory B cells by the third month. Meanwhile, plasmablasts exhibited a consistent decline throughout treatment. B cell activation pathways, specifically in naive and memory B cells, were downregulated during the third and sixth months. These findings were validated at the protein level throughout the first four weeks of treatment using flow cytometry. Comparative analysis with bulk transcriptome data from 22 Japanese SLE patients showed increased NR4A1 expression six months post-belimumab treatment, indicating its role in restricting self-reactive B cells, thereby contributing to the biological responses of anti-BAFF treatment. The observed B cell dynamics provided insights into the immunological mechanisms underlying the therapeutic effects of anti-BAFF in SLE patients. Furthermore, it underscores the need for research in predicting drug responses based on immune profiling.
Read full abstract