Abstract Cognitive Radio Networks (CRNs) present a compelling possibility to enable secondary users to take advantage of unused frequency bands in constrained spectrum resources. However, the network is vulnerable to a wide range of jamming attacks, which adversely affect its performance. Several countermeasures proposed in the literature require prior knowledge of the communication network and jamming strategy that are computationally intensive. These solutions may not be suitable for many real-world critical applications of the Internet of Things (IoT). Therefore, a novel self-exploration approach based on deep reinforcement learning is proposed to learn an optimal policy against dynamic attacks in CRN-based IoT applications. This method reduces computational complexity, without prior knowledge of the communication network or jamming strategy. A simulation of the proposed scheme eliminates interference effectively, consumes less power, and has a better Signal-to-Noise Ratio (SNR) than other algorithms. A platform-agnostic and efficient anti-jamming solution is provided to improve CRN’s performance when jamming occurs.
Read full abstract