The properties of the random sequential adsorption of objects of various shapes on a two-dimensional triangular lattice are studied numerically by means of Monte Carlo simulations. The depositing objects are formed by self-avoiding lattice steps, whereby the size of the objects is gradually increased by wrapping the walks in several different ways. The aim of this work is to investigate the impact of the geometrical properties of the shapes on the jamming density θ_{J} and on the temporal evolution of the coverage fraction θ(t). Our results suggest that the order of symmetry axis of a shape exerts a decisive influence on adsorption kinetics near the jamming limit θ_{J}. The decay of probability for the insertion of a new particle onto a lattice is described in a broad range of the coverage θ by the product between the linear and the stretched exponential function for all examined objects. The corresponding fitting parameters are discussed within the context of the shape descriptors, such as rotational symmetry and the shape factor (parameter of nonsphericity) of the objects. Predictions following from our calculations suggest that the proposed fitting function for the insertion probability is consistent with the exponential approach of the coverage fraction θ(t) to the jamming limit θ_{J}.
Read full abstract