Due to their low orbit, low-Earth-orbit (LEO) satellites possess advantages such as minimal transmission delay, low link loss, flexible deployment, diverse application scenarios, and low manufacturing costs. Moreover, by increasing the number of satellites, the system capacity can be enhanced, making them the core of future communication systems. However, there have been instances where malicious actors used LEO satellite communication equipment to illegally broadcast events in large sports stadiums or engage in unauthorized leakage of military secrets in sensitive military areas. This has become an urgent issue in the field of communication security. To combat and prevent abnormal and illegal communication activities using LEO satellites, this study proposes a LEO satellite downlink distributed jamming optimization method using a non-dominated sorting genetic algorithm. Firstly, a distributed jamming system model for the LEO satellite downlink is established. Then, using a non-dominated sorting genetic algorithm, the jamming parameters are optimized in the power, time, and frequency domains. Field jamming experiments were conducted in the southwest outskirts of Xi’an, China, targeting the LEO constellation of the China Satellite Network. The results indicate that under the condition that the jamming coverage rate is no less than 90%, the proposed method maximizes jamming power, minimizes time delay, and minimizes frequency compensation compared to existing jamming optimization methods, effectively improving the real-time jamming performance and success rate.