Abstract

The behavior of a system of two-dimensional elongated particles (discorectangles) packed in a slit between the two parallel walls was analyzed using a simulation approach. The packings were produced using the random sequential adsorption model with continuous positional and orientational degrees of freedom. The aspect ratio (length-to-width ratio, ɛ=l/d) of the particles was varied within the range ɛ∈[1;32] while the distance between the walls was varied within the range h/d∈[1;80]. The properties of deposits in jammed state [the coverage, the order parameter, and the long-range (percolation) connectivity between particles] were studied numerically. The values of ɛ and h significantly affected the structure of the packings and the percolation connectivity. Particularly, the observed nontrivial dependencies of the jamming coverage φ(ɛ) or φ(h) were explained by the interplay of the different geometrical factors related to confinement, particle orientation degrees of freedom and excluded volume effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call