Abstract

The different variants of two-stage random sequential adsorption (RSA) models for packing of disks and discorectangles on a two-dimensional (2D) surface were investigated. In the SD (sticks+disks) model, the discorectangles were first deposited and then the disks were added. In the DS (disks+sticks) model, the disks were first deposited and then discorectangles were added. At the first stage the particles were deposited up to the selected concentration and at the final (second) stage the particles were deposited up to the saturated (jamming) state. The main parameters of the models were the concentration of particles deposited at the first stage, aspect ratio of the discorectangles ɛ (length to diameter of ratio ɛ=l/d) and disk diameter D. All distances were measured using the value of d as a unit of measurement of linear dimensions, the disk diameter was varied in the interval D∈[1-10], and the aspect ratio value was varied in the interval ɛ∈[1-50]. The dependencies of the jamming coverage of particles deposited at the second stage versus the parameters of the models were analyzed. The presence of first deposited particles for both models regulated the maximum possible disk diameter D_{max} (SD model) or the maximum aspect ratio ɛ_{max} (DS model). This behavior was explained by the deposition of particles in the second stage into triangular (SD model) or elongated (DS model) pores formed by particles deposited at the first stage. The percolation connectivity of disks (SD model) and discorectangles (DS model) for the particles with a hard core and a soft shell structure was analyzed. The disconnectedness was ensured by overlapping of soft shells. The dependencies of connectivity versus the parameters of SD and DS models were also analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.