The local scanning orthogonal translation computed laminography (OTCL) has great potential for tiny fault detection of laminated structure thin-plate parts. However, it generates limited-angle and truncated projection data, which result in aliasing and truncation artifacts in the reconstructed images. The directional total variation (DTV) algorithm has been demonstrated to achieve highly accurate reconstructed images in limited-angle computed tomography (CT). However, its application in local scanning OTCL has not been explored. Based on this algorithm, we introduce the lp norm to better suppress artifacts, and prior information to further constrain the reconstructed image. Thus, we propose a prior information guided directional total p-variation (DTpV) algorithm (Pig-DTpV). The Pig-DTpV model is a constrained non-convex optimization model. The constraint term are the six DTpV terms, whereas the objective term is the data fidelity term. Then, we use the iterative reweighting strategy and the Chambolle–Pock (CP) algorithm to solve the model. The Pig-DTpV reconstruction algorithm’s performance is compared with other algorithms such as simultaneous algebraic reconstruction technique (SART), TV, reweighted anisotropic-TV (RwATV), and DTV in simulation and real data experiments. The experiment results demonstrate that the Pig-DTpV algorithm can reduce truncation and aliasing artifacts and enhance the quality of reconstructed images.
Read full abstract