Arrival-time picking is a critical step in microseismic data processing, and thus the quality control of arrival results is necessary. Conventional picking methods may be inaccurate or inconsistent due to varied signal-to-noise ratios (SNR) and waveform patterns of the events recorded in different time sections. To address this issue, we propose a quality assessment method based on waveform similarity coefficients to evaluate arrival results and also a global optimization algorithm based on iterative cross-correlation to refine arrival times. The recordings after moveout correction are applied to calculate the intra-event and inter-event waveform coefficients for the quality assessment of arrival results. The residual time differences of intra-event and inter-event traces are calculated sequentially using an enhanced iterative cross-correlation method. In addition, the stacked waveform of each event after the intra-event residual time correction is introduced for global optimization to obtain the inter-event residual time discrepancies. We use both synthetic data and field data to validate the proposed method. The results indicate that the proposed method yields more robust and reliable results. The quality assessment of the optimized arrivals is greatly enhanced compared to the adjusted picks obtained from single event-based processing methods.