Let (X,d) be a complete metric space, T : X → X T:X \to X , and α : [ 0 , ∞ ) 5 → [ 0 , ∞ ) \alpha :[0,\infty )^5 \to [0,\infty ) be nondecreasing with respect to each variable. Suppose that for the function γ ( t ) = α ( t , t , t , 2 t , 2 t ) \gamma (t) = \alpha (t,t,t,2t,2t) , the sequence of iterates γ n {\gamma ^n} tends to 0 in [ 0 , ∞ ) [0,\infty ) and lim t → ∞ ( t − γ ( t ) ) = ∞ {\lim _{t \to \infty }}(t - \gamma (t)) = \infty . Furthermore, suppose that for each x ∈ X x \in X there exists a positive integer n = n ( x ) n = n(x) such that for all y ∈ X y \in X , \[ d ( T n x , T n y ) ⩽ α ( d ( x , T n x ) , d ( x , T n y ) , d ( x , y ) , d ( T n x , y ) , d ( T n y , y ) ) . d({T^n}x,{T^n}y) \leqslant \alpha (d(x,{T^n}x),d(x,{T^n}y),d(x,y),d({T^n}x,y),d({T^n}y,y)). \] Under these assumptions our main result states that T has a unique fixed point. This generalizes an earlier result of V. M. Sehgal and some recent results of L. Khazanchi and K. Iseki.