This study aims to establish the convolutional-type variational and reciprocity theorems within the framework of the hyperbolic two-temperature generalized thermoelasticity theory for an isotropic thermoelastic material, with the help of alternate formulation of the mixed boundary initial value problem, in which initial conditions are combined with field equations (using the Laplace transform). The convolutional-type variational principle adapts readily to numerical solutions based on the Ritz method and is useful in the finite element method. The reciprocity theorem is helpful in the theoretical development of boundary and finite element methods. The current effort can be valuable for the problem of coupling effects of thermal and mechanical fields, especially in geophysics and mining.
Read full abstract