A metasurface as an artificial electromagnetic structure can concentrate optical energy into nanometric volumes to strongly enhance the light-matter interaction, which has been becoming a powerful platform for optical sensing, nonlinear effects, and quantum optics. Herein, we developed a novel hybrid plasmonic-dielectric metasurface consisting of Au nanorings (Au NRs) and TiO2 nanoparticles derived from MXene (TiO2 NPs@MXene). The hybrid metasurface simultaneously benefited from the high near-field enhancement effect of plasmonic materials and the low loss of dielectric materials. Furthermore, the optical modulation efficiency of the hybrid metasurface can be regulated by a magnetic mirror configuration. The magnetic mirror acted like a mirror, confining the electrons to a limited region and increasing the density of the surface plasmon. Moreover, the electrochemiluminescence (ECL) of the Cu2BDC metal-organic framework (Cu2BDC-MOF) served as a light source for the Au NRs/TiO2 NPs@MXene metasurface. Due to the exceptional light manipulation capability of the hybrid metasurface and the coordination of the magnetic mirror, the isotropic ECL signal can be dynamically amplified and converted into polarized emission. Finally, a metasurface-regulated ECL (MECL)-based biosensor with a dual-positive membrane protein recognition strategy was developed for the accurate identification of gastric cancer-derived extracellular vesicles. The novel MECL research opened up a new route in the realization of dynamically tunable metasurfaces for optical sensing and novel nanophotonic devices.