Statistics of the mixed velocity–passive scalar field and its Reynolds number dependence are studied in quasi-isotropic decaying grid turbulence with an imposed mean temperature gradient. The turbulent Reynolds number (using the Taylor microscale as the length scale), Rλ, is varied over the range 85 [les ] Rλ [les ] 582. The passive scalar under consideration is temperature in air. The turbulence is generated by means of an active grid and the temperature fluctuations result from the action of the turbulence on the mean temperature gradient. The latter is created by differentially heating elements at the entrance to the wind tunnel plenum chamber. The mixed velocity–passive scalar field evolves slowly with Reynolds number. Inertial-range scaling exponents of the co-spectra of transverse velocity and temperature, Evθ(k1), and its real-space analogue, the ‘heat flux structure function,’ 〈Δv(r)Δθ(r)〉, show a slow evolution towards their theoretical predictions of −7/3 and 4/3, respectively. The sixth-order longitudinal mixed structure functions, 〈(Δu(r))2(Δθ(r))4〉, exhibit inertial-range structure function exponents of 1.36–1.52. However, discrepancies still exist with respect to the various methods used to estimate the scaling exponents, the value of the scalar intermittency exponent, μθ, and the effects of large-scale phenomena (namely shear, decay and turbulent production of 〈θ2〉) on 〈(Δu(r))2(Δθ(r))4〉. All the measured fine-scale statistics required to be zero in a locally isotropic flow are, or tend towards, zero in the limit of large Reynolds numbers. The probability density functions (PDFs) of Δv(r)Δθ(r) exhibit roughly exponential tails for large separations and super-exponential tails for small separations, thus displaying the effects of internal intermittency. As the Reynolds number increases, the PDFs become symmetric at the smallest scales – in accordance with local isotropy. The expectation of the transverse velocity fluctuation conditioned on the scalar fluctuation is linear for all Reynolds numbers, with slope equal to the correlation coefficient between v and θ. The expectation of (a surrogate of) the Laplacian of the scalar reveals a Reynolds number dependence when conditioned on the transverse velocity fluctuation (but displays no such dependence when conditioned on the scalar fluctuation). This former Reynolds number dependence is consistent with Taylor’s diffusivity independence hypothesis. Lastly, for the statistics measured, no violations of local isotropy were observed.