The On-Line Isotope Mass Separator ISOLDE [1] is a facility dedicated to the production of a large variety of radioactive ion beams (RIB) for a great number of different experiments. Over 1000 radioactive nuclides from 70 elements can be produced in thick high-temperature targets via spallation, fission or fragmentation reactions with the PS-Booster pulsed proton-beam. With the arrival of CERN’s new linear accelerator Linac 4 [2,3], ISOLDE will have the possibility to exploit a factor of 3 increase in proton-beam intensity and a possible proton-beam energy increase from 1.4GeV to 2GeV [4].After 20years of successful ISOLDE operation at the PS-Booster, a major upgrade of the facility, the HIE-ISOLDE (High Intensity and Energy ISOLDE) project was launched in 2010. It is divided into three parts; a staged upgrade of the REX post-accelerator to increase the beam energy from 3.3MeV/u to 10MeV/u using a super-conducting Linac, an evaluation of the critical issues associated with an increase in proton-beam intensity and a machine design for an improvement in RIB quality. The latter two will be addressed within the HIE-ISOLDE Design Study. This paper gives an overview of the Design Study and will outline the critical issues to be addressed concerning the intensity upgrade and will propose solutions and improvements to be implemented. It will also give an insight to the propositions being studied in order to improve secondary beam characteristics essential to accomplish a more demanding physics program.