Factors associated with blood pressure regulation during recovery from exercise dramatically influence core temperature regulation. However, it is unknown whether sex-related differences in postexercise hemodynamics affect core and muscle temperature response. Sixteen participants (8 males, 8 females) completed an incremental isotonic test on a Kin-Com isokinetic apparatus to determine their activity-specific peak oxygen consumption during bilateral knee extensions (Vo(2)(sp)). On a separate day, participants performed 15 min of isolated bilateral knee extensions at a moderate (60% Vo(2)(sp)) exercise intensity followed by a 90-min recovery. Esophageal temperature (T(es)), mean arterial pressure (MAP), muscle temperature at four depths in the active vastus medialis (T(VM)) and three depths in the inactive triceps brachii (T(TB)) were measured concurrently with sweat rate and cutaneous vascular conductance (CVC). Relative to the preexercise resting T(es) of 36.7 degrees C (SD 0.1), between 10 and 50-min of recovery T(es) was 0.19 degrees C (SD 0.02) higher for females than males (P = 0.037). All measurements of T(VM) (0.036 > P > 0.014) and T(TB) (0.048 > P > 0.008) were higher for females during the initial 30 min of recovery by between 0.46 degrees C and 0.64 degrees C for T(VM) and by between 0.53 degrees C and 0.70 degrees C for T(TB). In parallel, females showed a 5 to 7 mmHg greater reduction in MAP during recovery relative to males (P = 0.002) and a significantly lower CVC (P = 0.020) and sweat rate (P = 0.034). Therefore, it is concluded that females demonstrate a greater and more prolonged elevation in postexercise esophageal temperature and active and inactive muscle temperatures, which is paralleled by a greater postexercise hypotensive response.
Read full abstract