This research presents the effective preparation of a novel dual network chitosan-based hydrogel (CMAPP) for the adsorption of methylene blue (MB), malachite green (MG), crystalline violet (CV), and basic fuchsin (BF) using the sol-gel method to address the escalating issue of dye pollution. FTIR, XRD, SEM, EDS, XPS, TGA, and zeta potential study examined hydrogel production and physicochemical properties. To ascertain the maximum adsorption capacity, the influences of pH, temperature, initial dye concentration, contact time, and adsorbent dosage on adsorption were systematically analyzed. It was observed that CMAPP demonstrated significant removal efficiencies (97.62%, 96.67%, 98.12%, and 99.32%) for the dyes MB, MG, CV, and BF at a concentration of 500 mg/L under optimal conditions. The findings from the adsorption kinetics and isotherm studies indicated that pseudo-second-order kinetics and the Langmuir model were the most appropriate for characterizing the adsorption process of hydrogels. The thermodynamic findings demonstrated that the adsorption process was exothermic and spontaneous. After five cycles of adsorption, the hydrogel demonstrated a consistent dye removal efficiency of around 80%, indicating commendable recyclability. In the interference studies, CMAPP exhibits superior anti-interference capability against CV and BF, which is advantageous for its practical application. The findings from XPS and FTIR investigations indicate that electrostatic attraction, hydrogen bonding, and n-π interactions are the primary forces between the adsorbent and the dyes. The synthesis of CMAPP offers an innovative approach for the effective elimination of cationic dyes and demonstrates significant potential in the treatment of complicated wastewater.
Read full abstract