Single-crystal lithium-nickel-manganese-cobalt-oxide (SC-NMC) is attracting increasing attention due to its excellent structural stability. However, its practical production faces challenges associated with complex precursor preparation processes and severe lithium-nickel cation mixing at high temperatures, which restricts its widespread application. Here, a molten-salt-assisted method is proposed using low-melting-point carbonates. This method obviates the necessity for precursor processes and simplified the synthetic procedure for SC-NMC down to a single isothermal sintering step. Multiple characterizations indicate that the acquired SC-LiNi0.6Mn0.2Co0.2O2 (SC-622) exhibits favorable structural capability against intra-granular fracture and suppressive Li+/Ni2+ cation mixing. Consequently, the SC-622 exhibits superior electrochemical performance with a high initial specific capacity (174 mAhg-1 at 0.1C, 3.0-4.3V) and excellent capacity retention (87.5% after 300 cycles at 1C). Moreover, this molten-salt-assisted method exhibits its effectiveness in directly regenerating SC-622 from spent NMC materials. The recovered material delivered a capacity of 125.4 mAhg-1 and retained 99.4% of the initial capacity after 250 cycles at 1 C. This work highlights the importance of understanding the process-structure-property relationships and can broadly guide the synthesis of other SC Ni-rich cathode materials.
Read full abstract