Efficient carbon capture requires engineered porous systems that selectively capture CO2 and have low energy regeneration pathways. Porous liquids (PLs), solvent-based systems containing permanent porosity through the incorporation of a porous host, increase the CO2 adsorption capacity. A proposed mechanism of PL regeneration is the application of isostatic pressure in which the dissolved nanoporous host is compressed to alter the stability of gases in the internal pore. This regeneration mechanism relies on the flexibility of the porous host, which can be evaluated through molecular simulations. Here, the flexibility of porous organic cages (POCs) as representative porous hosts was evaluated, during which pore windows decreased by 10-40% at 6 GPa. POCs with sterically smaller functional groups, such as the 1,2-ethane in the CC1 POC resulted in greater imine cage flexibility relative to those with sterically larger functional groups, such as the cyclohexane in the CC3 POC that protected the imine cage from the application of pressure. Structural changes in the POC also caused CO2 adsorption to be thermodynamically unfavorable beginning at ∼2.2 GPa in the CC1 POC, ∼1.1 GPa in the CC3 POC, and ∼1.0 GPa in the CC13 POC, indicating that the CO2 would be expelled from the POC at or above these pressures. Energy barriers for CO2 desorption from inside the POC varied based on the geometry of the pore window and all the POCs had at least one pore window with a sufficiently low energy barrier to allow for CO2 desorption under ambient temperatures. The results identified that flexibility of the CC1, CC3, or CC13 POCs under compression can result in the expulsion of captured gas molecules.
Read full abstract