Adenosine has been demonstrated to inhibit gastric acid secretion. In the rat stomach, this inhibitory effect may be mediated indirectly by increasing the release of somatostatin-like immunoreactivity (SLI). Results show that adenosine analogs augmented SLI release in the isolated vascularly perfused rat stomach. The rank order of potency of the analogs in stimulating SLI release was 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) approximately 5'-N-ethylcarboxamidoadenosine > 2-chloroadenosine > R-(-)-N(6)-(2-phenylisopropyl)adenosine >1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-beta-d-ribofuranuronamide > N(6)-cyclopentyladenosine approximately N(6)-cyclohexyladenosine > S-(+)-N(6)-(2-phenylisopropyl) adenosine, suggesting the involvement of the A(2A) receptor. In agreement, 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a] [1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385), an A(2A) receptor antagonist, was shown to abolish the adenosine- and CGS 21680-stimulated SLI release. Immunohistochemical studies reveal the presence of A(2A) receptor immunoreactivity on the gastric plexi and mucosal D-cells, but not on parietal cells and G-cells, suggesting that adenosine may act directly on D-cells or indirectly on the gastric plexi to augment SLI release. The present study also demonstrates that the structure of the mucosal A(2A) receptor is identical to that in the rat brain, and that alternative splicing of this gene does not occur. A real-time reverse transcription-polymerase chain reaction assay has also been established to quantify the levels of A(2A) receptor mRNA. Results show that gastric tissues contained significantly lower levels of A(2A) receptor mRNA compared with the striatum. The lowest level was detected in the mucosa. In conclusion, adenosine may act on A(2A) receptors to augment SLI release and consequently control gastric acid secretion.
Read full abstract