In the field of neuroscience and ecotoxicology, there is a great need for investigating the effect(s) of a variety of different chemicals (e.g., pharmacologically active compounds, pesticides, neurotransmitters, modulators) at different biological levels. Different contractile tissue preparations have provided excellent model systems for in vitro pharmacological experiments for a long time. However, such investigations usually apply mechanical force transducer-based approaches. Thus, a rapid, easy, cheap, digital, and reproducible in vitro pharmacological method based on an effective, ‘non-invasive’ (compared to the force-transducer approaches), refraction-based optical recording approach and isolated heart preparations was developed.•A versatile and unique refraction-based optical recording system with a Java application was developed.•The recording system was tested and validated on isolated heart preparations obtained from the widely used invertebrate model organism, the great pond snail (Lymnaea stagnalis).•The recording system illustrates the progression of technology from the mechanical force transducer system and can represent a suitable tool in ecotoxicology or neuroscience.
Read full abstract