Raf kinase enzymes are often dysregulated in melanoma. While sorafenib demonstrates strong activity against wild-type B-Raf, it fails to effectively inhibit the mutated form of B-Raf. In this study, sorafenib served as a lead compound for the development of new derivatives designed to enhance inhibitory activity across multiple Raf isoforms (pan-Raf inhibitors). Novel naphthalene-based diarylamide derivatives were subsequently designed, synthesized, and evaluated for their biological activity against various Raf kinase isoforms and the melanoma A375 cell line. Among these, compound 9a, containing a difluoromethoxy group, demonstrated strong inhibitory activity across B-RafWT, B-RafV600E, and c-Raf. Additionally, it induced G2/M phase arrest and triggered dose-dependent apoptosis, effectively suppressing both cell proliferation and survival. Compound 9a also exhibited high selectivity for Raf isoforms with minimal off-target effects, underscoring its specificity and therapeutic potential for Raf-driven malignancies.
Read full abstract