In more than 50 to 90% of type 2 diabetic patients, under the influence of various factors, the production of islet amyloid polypeptide or amylin in pancreatic beta cells increases. Spontaneous accumulation of amylin peptide in the form of insoluble amyloid fibrils and soluble oligomers is one of the main causes of beta cell death in diabetic patients. The objective of the present study was to evaluate the effect of pyrogallol, as a phenolic compound, on inhibiting the formation of amylin protein amyloid fibrils. In this study, different techniques such as the thioflavin T (ThT) and 1-Anilino-8-naphthalene sulfonate (ANS) fluorescence intensity and the circular dichroism (CD) spectrum, will be used to investigate the effects of this compound on inhibiting the formation of amyloid fibrils. To investigate the interaction sites of pyrogallol with amylin, docking studies were performed. Our results that pyrogallol in a dose-dependent manner (0.5:1, 1:1, and 5:1, Pyr to Amylin) inhibits the amylin amyloid fibrils formation. Docking analysis revealed that pyrogallol forms hydrogen bonds with valine 17 and asparagine 21. In addition, this compound forms 2 more hydrogen bonds with asparagine 22. This compound also forms hydrophobic bonds with histidine 18. Considering this data and the direct relationship between oxidative stress and the formation of amylin amyloid accumulations in diabetes, the use of compounds with both antioxidant and anti-amyloid properties can be considered an important therapeutic strategy for type 2 diabetes.
Read full abstract