Abstract The applicability of the single-aliquot regenerative-dose (SAR) protocol, by using the optically stimulated luminescence (OSL) signal of quartz as well as the post-infrared–infrared (pIRIR) signals of polymineral fine grains, namely pIRIR225 and pIRIR290, was assessed for dating loess in New Zealand South Island. OSL signals of quartz grains displayed low sensitivity. However, the application of repeated irradiation/bleaching cycles did not result in an increase in sensitivity; annealing in the 300–500°C temperature range generated the sensitisation of both the 110°C thermoluminescence (TL) peak as well as the OSL signal, likely by activation of yet unidentified luminescence centres. After heating, the quartz signal is comparable to that of ideal samples, but the annealing is precluding successful dating. On the other hand, feldspar infrared-stimulated signals displayed satisfactory properties, allowing estimation of ages ranging from 14 ± 1–29 ± 3 ka for the investigated deposit. It was shown that pIRIR225 and pIRIR290 methods have potential for dating loess in the South Island of New Zealand, based on the following observations: (i) Dose recovery tests were successful with recovered-to-given dose ratios with a <10% deviation from unity, (ii) constant residual values of about 4 Gy and about 10 Gy were obtained after exposures for 48 h in the case of pIRIR225 signals and 96 h in the case of pIRIR290 signals, respectively, (iii) while a slight dose-dependence of the residual was reported, and for a dose as large as 1600 Gy the residual values are ≅9 Gy and ≅19 Gy for pIRIR225 and pIRIR290 signals, respectively.