Let E E be a real Banach space with a uniformly convex dual, and let K K be a nonempty closed convex and bounded subset of E E . Let T : K → K T:K \to K be a continuous strongly pseudocontractive mapping of K K into itself. Let { c n } n = 1 ∞ \{ {c_n}\} _{n = 1}^\infty be a real sequence satisfying: (i) 0 > c n > 1 0 > {c_n} > 1 for all n ⩾ 1 n \geqslant 1 ; (ii) ∑ n = 1 ∞ c n = ∞ \sum \nolimits _{n = 1}^\infty {{c_n} = \infty } ; and (iii) ∑ n = 1 ∞ c n b ( c n ) > ∞ \sum \nolimits _{n = 1}^\infty {{c_n}b({c_n}) > \infty } , where b : [ 0 , ∞ ) → [ 0 , ∞ ) b:[0,\infty ) \to [0,\infty ) is some continuous nondecreasing function satisfying b ( 0 ) = 0 , b ( c t ) ⩽ c b ( t ) b(0) = 0,\,b(ct) \leqslant cb(t) for all c ⩾ 1 c \geqslant 1 . Then the sequence { x n } n = 1 ∞ \{ {x_n}\} _{n = 1}^\infty generated by x 1 ∈ K {x_1} \in K , \[ x n + 1 = ( 1 − c n ) x n + c n T x n , n ⩾ 1 , {x_{n + 1}} = (1 - {c_n}){x_n} + {c_n}T{x_n},\qquad n \geqslant 1, \] converges strongly to the unique fixed point of T T . A related result deals with the Ishikawa iteration scheme when T T is Lipschitzian and strongly pseudocontractive.