Critical limb ischemia (CLI) is a peripheral arterial disease resulting from chronic inflammation of vascular systems. Recent studies have shown that inhibiting macrophage inflammation has the potential to treat CLI, and extracellular vesicles (EVs) from endothelial cells can inhibit macrophage activation. However, the limited cell-targeting capabilities and rapid clearance of EVs from the injection site limit the in vivo application of the EVs. Here, we modified endothelial EVs with platelet membranes (pM/EVs) to boost the inhibition effects on macrophage inflammation and developed an injectable alginate-based collagen composite (ACC) hydrogel for localized delivery of pM/EVs (pM/EVs@ACC) for CLI treatment. We found that pM/EVs can effectively inhibit macrophage inflammation in vitro. Furthermore, pM/EVs@ACC treatment significantly promotes the recovery of limb functions, restoring the feet' blood supply and relieving inflammation. Our findings provide compelling evidence that the pM/EVs@ACC injectable system mediating delivery of pM/EVs is a promising strategy for CLI treatment.