This study explores the protective effects of Puerarin, a compound derived from the traditional Chinese herb Pueraria, against cellular damage induced by Oxygen-Glucose Deprivation/Reoxygenation (OGD/R) in PC12 cells. The research focuses on understanding how Puerarin influences the mechanisms of ferroptosis and oxidative stress, key factors in ischemia-reperfusion injury relevant to neurodegenerative diseases. In our in vitro model, we identified the optimal OGD duration to induce significant cell stress and confirmed the non-toxicity of Puerarin up to 100uM. The results reveal that Puerarin substantially mitigates the detrimental effects of OGD/R, including improvements in cell viability, mitochondrial integrity, and reductions in oxidative stress markers like ROS and lipid peroxidation. Notably, Puerarin modulates key proteins in the autophagy process and the Nrf2 pathway, crucial in cellular stress responses. Further, the use of 3-Methyladenine, an autophagy inhibitor, underscores the significance of autophagy in managing OGD/R-induced stress. These findings suggest Puerarin's potential as a therapeutic agent for conditions characterized by ischemic cellular damage, highlighting the need for further clinical exploration.
Read full abstract