Ischemic stroke is a significant threat to human health. Currently, there is a lack of effective treatments for stroke, and progress in new neuron-centered drug target development is relatively slow. On the other hand, studies have demonstrated that brain microvascular endothelial cells (BMECs) are crucial components of the neurovascular unit and play pivotal roles in ischemic stroke progression. To better understand the complex multifaceted roles of BMECs in the regulation of ischemic stroke pathophysiology and facilitate BMEC-based drug target discovery, we utilized a transcriptomics-informed systems biology modeling approach and constructed a mechanism-based computational multipathway model to systematically investigate BMEC function and its modulatory potential. Extensive multilevel data regarding complex BMEC pathway signal transduction and biomarker expression under various pathophysiological conditions were used for quantitative model calibration and validation, and we generated dynamic BMEC phenotype maps in response to various stroke-related stimuli to identify potential determinants of BMEC fate under stress conditions. Through high-throughput model sensitivity analyses and virtual target perturbations in model-based single cells, our model predicted that targeting succinate could effectively reverse the detrimental cell phenotype of BMECs under oxygen and glucose deprivation/reoxygenation, a condition that mimics stroke pathogenesis, and we experimentally validated the utility of this new target in terms of regulating inflammatory factor production, free radical generation and tight junction protection in vitro and in vivo. Our work is the first that complementarily couples transcriptomic analysis with mechanistic systems-level pathway modeling in the study of BMEC function and endothelium-based therapeutic targets in ischemic stroke.
Read full abstract