BackgroundHepatic steatosis creates a significant risk of liver resection and transplantation and is extremely susceptible to ischemia/reperfusion (I/R) injury. Ischemic postconditioning (IPostC) has been shown to attenuate I/R injury in normal livers; however, its role in steatotic livers remains unknown. The current study sought to explore whether IPostC could attenuate normothermic I/R injury in rats with steatotic livers and to investigate potential protective measures.MethodsHepatic steatosis was triggered in Wistar rats fed high-fat diets. The role of IPostC was detected in normal and steatotic livers with 30 min of ischemia and 6 h of reperfusion. Blood and liver tissues were collected to assess hepatocyte damage, lipid peroxidation, inflammatory factors, neutrophil accumulation, and adenosine triphosphate (ATP) content.ResultsCompared to normal livers, steatotic livers were more susceptible to I/R damage, as evidenced by incremental concentrations of liver enzymes in the blood and more severe pathological changes in the liver. Hepatic I/R injury was significantly reduced by IPostC in both normal and steatotic livers. We further found that endogenous protective measures moderated lipid peroxidation, inflammatory cytokine expression and neutrophil accumulation, and reduced follow-up hepatic injury. The ATP content of steatotic livers was also significantly lower than that of Normal livers before and after I/R injury. IPostC greatly preserved the ATP content of normal and steatotic livers with I/R injury.ConclusionsIPostC appears to provide important protection against hepatic I/R injury in normal and steatotic livers under normothermic conditions. These data have important clinical implications for liver surgery and transplantation.