Mitochondrial ATP-sensitive potassium channel opener, diazoxide, is shown to have protective effect on the heart and brain following ischemia-reperfusion-induced injury (IR/II). However, the detailed effect of diazoxide and its antagonist on neuronal death, mitochondrial changes, and apoptosis in cerebral IR/II has not fully studied. IR/II was induced in rats by the 4-vessel occlusion model. Neuronal cell death and mitochondrial changes in CA1–CA4 pyramidal cells of the hippocampus were studied by light and electron microscopy, respectively. Apoptosis was assessed by measuring the amount of protein expressed by Bax and Bcl-2 genes. In light microscopy studies, the number of total and normal cells were increased only following 18 mg/kg of diazoxide. Lower doses (2 and 6 mg/kg) failed to change the cell numbers. All three doses of glibenclamide (1, 5, and 25 mg/kg) decreased the number of total and normal cell populations. In electron microscopy studies, different doses of diazoxide and glibenclamide prevented and aggravated the IR-induced morphological changes, respectively. Western blot analysis showed that diazoxide and glibenclamide inhibited and enhanced Bax protein expression respectively. Regarding Bcl-2 expression, only diazoxide showed a significant enhancement of gene expression. In conclusion, the results show that diazoxide can exhibit neuroprotective effects against IR/II in hippocampal regions, possibly through the opening of mitochondrial ATP-sensitive K+ channels.