MacDougall, KB, McClean, ZJ, MacIntosh, BR, Fletcher, JR, and Aboodarda, SJ. Ischemic preconditioning, but not priming exercise, improves exercise performance in trained rock climbers. J Strength Cond Res 37(11): 2149-2157, 2023-To assess the effects of ischemic preconditioning (IPC) and priming exercise on exercise tolerance and performance fatigability in a rock climbing-specific task, 12 rock climbers completed familiarization and baseline tests, and constant-load hangboarding tests (including 7 seconds on and 3 seconds off at an intensity estimated to be sustained for approximately 5 minutes) under 3 conditions: (a) standardized warm-up (CON), (b) IPC, or (c) a priming warm-up (PRIME). Neuromuscular responses were assessed using the interpolated twitch technique, including maximum isometric voluntary contraction (MVC) of the finger flexors and median nerve stimulation, at baseline and after the performance trial. Muscle oxygenation was measured continuously using near-infrared spectroscopy (NIRS) across exercise. Time to task failure (T lim ) for IPC (316.4 ± 83.1 seconds) was significantly greater than CON (263.6 ± 69.2 seconds) ( p = 0.028), whereas there was no difference between CON and PRIME (258.9 ± 101.8 seconds). At task failure, there were no differences in MVC, single twitch force, or voluntary activation across conditions; however, recovery of MVC and single twitch force after the performance trial was delayed for IPC and PRIME compared with CON ( p < 0.05). Despite differences in T lim , there were no differences in any of the NIRS variables assessed. Overall, despite exercise tolerance being improved by an average of 20.0% after IPC, there were no differences in neuromuscular responses at task failure, which is in line with the notion of a critical threshold of peripheral fatigue. These results indicate that IPC may be a promising precompetition strategy for rock climbers, although further research is warranted to elucidate its mechanism of action.
Read full abstract