Little is known about how changes in the biodiversity and functional traits of macroinvertebrates in rivers respond to the responses of anthropic pressures and their driving factors. Macroinvertebrates were sampled at 17 sites in the Irtysh River Basin and classified macroinvertebrates into 10 traits and 38 categories between May and August 2022. Then, we performed R-mode linked to Q-mode (RLQ) analysis and calculated functional richness, evenness, divergence, and Rao's quadratic entropy (RaoQ) for each site and community-weighted means for each trait category. Our results indicated that there were pronounced alterations in species variability in the urban region. Functional divergence indicated fierce competition among species and considerable niche overlap in the urban region. Functional evenness indicated that species abundance distribution and interspecific functional distance were not uniform in the urban region. Functional richness indicated that the urban region was the strongest region in terms of niche occupation, resource utilization, and buffering capacity for environmental fluctuations. Rao's quadratic entropy showed that the trait difference of macroinvertebrates was the largest in all regions, which was caused by the gradient environmental difference. Research has revealed that urbanization significantly influences the evolutionary trajectory of macroinvertebrate fauna, culminating in an upsurge in pollution-tolerant species and a convergence of functional traits. We recommend strengthening the control of urban and industrial pollution and wise planning and management of land and water resources to mitigate the impact of anthropogenic destruction on habitat fragmentation in the Irtysh River Basin.
Read full abstract