Polycystic ovarian syndrome (PCOS) is one of the common causes or female infertility. Phyllanthus muellerianus (Euphorbiaceae) is a plant used to treat various ailments including frequent menstruation and anovulation. We investigated the effects of P. muellerianus extracts on estrus cyclicity, lipid profile, oxidative stress-related markers, sex hormones, and ovarian architecture in letrozole-induced PCOS in rats. After induction of PCOS using letrozole (1 mg/kg/day), normal (n=6), and PCOS (n=108; distributed into 18 groups of 6 animals/group) rats were treated orally for 7 or 14 days with distilled water (10 ml/kg/day), clomiphene citrate (2 mg/kg/day), metformin (500 mg/kg/day), and aqueous or methanolic extract of P. muellerianus (30, 60, and 120 mg/kg). Estrus cyclicity, body, and sexual organ (ovaries and uterus) weights, biochemical and histological parameters were measured. There were letrozole-induced PCOS characterized by irregular estrus cyclicity, elevated (p<0.05-0.01) glycaemia, ovarian weight, triglycerides, total cholesterol, LDL cholesterol, VLDL cholesterol, malondialdehyde, luteinizing hormone (LH), and testosterone concentrations, but there were low (p<0.05-0.001) HDL cholesterol, estradiol, progesterone, catalase, peroxidase, and superoxide dismutase levels, compared with control. PCOS rats had multiple cysts compared with control. These reproductive, biochemical, and structural alterations were alleviated by P. muellerianus extracts. For instance, P. muellerianus restored the estrus cyclicity with a remarkable effect after 14 days of treatment. Moreover, P. muellerianus significantly decreased (p<0.001) LH and testosterone (both extracts; 30, 60, and 120 mg/kg) levels, but increased (p<0.01) estradiol (aqueous extract; 60 mg/kg) concentration. Cystic follicles were also decreased after plant application. P. muellerianus alleviated reproductive, hormonal, and structural alterations in PCOS rats. This plant could be useful in the management/treatment of reproductive and metabolic disorders related to PCOS.
Read full abstract