This work addresses the tailoring spectral response of grating-assisted co-directional couplers (GADCs) in the context of wavelength filtering for fiber-to-the-home (FTTH) applications. Design methods for spectral response engineering by means of coupling profile apodization-type weighting techniques and also more advanced rational transfer functions fitting a predefined spectral window template are presented. Modeling results based on coupled mode theory are then applied for the design and experimental fabrication of InGaAsP/InP GADCs targeting 1.3+/1.3− µm diplexer application in FTTH access networks. The experimental results are found to be in good agreement with the modeling predictions. The design tools presented are quite general and can be easily adapted to other technology platforms, such as silicon photonics for the use of GADCs as add-drop wavelength division multiplexers. The field of parity–time symmetry is another avenue where these types of gain–loss-assisted GADCs as active components are of interest for switching applications, and the design methods presented here may find utility.
Read full abstract