The photochemical degradation of triadimefon in seawater was investigated under different reaction conditions in this study. The results showed that triadimefon could be effectively degraded by the irradiation of a high-pressure mercury lamp and the photodegradation rates were influenced by aquatic media, heavy metal ions and photosensitizers. The photochemical degradation of triadimefon followed the first-order reaction kinetic behavior, with the rate constants ranging from 0.0027 to 0.0128 min−1 under the studied conditions. The photolysis of triadimefon was slower in natural seawater than in distilled water or synthetic seawater. All the heavy metal ions studied in this paper had inhibition effects on the photolysis of triadimefon. Acetone, as a common photosensitizer, could accelerate the photolysis of triadimefon. Three photoproducts were identified by GC-MS analysis. Our study confirmed that photochemical degradation is an effective pathway to remove triadimefon in seawater.