In this research, the viability of hybrid wind and solar energy for irrigating kiwi orchards in Guilan province, located in the northern part of Iran is explored. Analysis of wind speed data reveals that wind energy can be utilized for irrigation purposes for more than six months annually. The wind power density, peaking at 467 W/m², supports the feasibility of wind energy for irrigation over ten months each year. Solar irradiance measurements estimate an energy generation of approximately 5.23 kWh/m² from January to July. The average daily temperature, peaking at 29.7°C, suggests optimal conditions for the efficient operation of solar panels. The net water requirement for the kiwi orchard during the irrigation period was calculated based on garden area and other relevant parameters, ensuring accurate irrigation planning. Using the calculated net water requirements and meteorological data, the necessary pumping power was determined, leading to the design of a hybrid wind-solar irrigation system. An environmental impact assessment estimated a significant reduction in CO2 emissions over a 25-year period. Additionally, a life-cycle cost analysis demonstrated that the hybrid irrigation system would incur only 60% of the total cost of a conventional system over the same period, highlighting its economic feasibility.
Read full abstract