A multianalytical approach was used to characterize the materials in the “Vienna Moamin”, an outstanding richly illustrated manuscript from the late thirteenth century, which was made in Italy and is now kept in the Kunsthistorisches Museum Wien. The investigations were carried out with a non-invasive approach by using complementary techniques, such as X-ray fluorescence (XRF), reflection Fourier transform infrared spectroscopy (rFTIR), Raman spectroscopy, and fiber optic reflectance spectroscopy (FORS). In addition, XRF scans were performed in two areas which yielded chemical maps showing the elemental distribution. The results revealed that typical materials from the medieval times were applied for the manuscript. Calcium carbonate on the parchment surface indicated a dehairing process with lime and/or whitening with chalk. Two different iron gall inks were detected in the main text and marginal notes, and vermilion was used for rubrication. The color palette included azurite, a green colorant composed of orpiment and indigo, yellow ochre, brown iron oxide pigments, minium, vermilion, brazilwood lake, and carbon black. Moreover, mosaic gold was detected in gold-beige hues. Lead white was identified for white areas and fine decoration lines, as well as in mixture with blue and red pigments for light color shades. No reliable information could be obtained concerning the binding media. Two differing application techniques for gold leaf were detected, which correspond with stylistic differences: either on gypsum or chalk preparation layers. Furthermore, calcium soap contents in certain colors were determined only on one folio with unique characteristics. The XRF scans of two historiated initials revealed that similar materials were applied in both cases and provided further valuable information about the painting technique. The results obtained enabled to gain insights into Italian thirteenth century manuscript production techniques and to characterize the used materials. The investigations showed the importance of scanning XRF for the elucidation of painting techniques, but also the demand of scanning devices utilizing compound specific analytical techniques such as rFTIR.