BackgroundThe T2* technique, used for quantifying myocardial iron content (MIC), has limitations in detecting early myocardial iron overload (MIO). The in vivo mapping of the myocardial T1 relaxation time is a promising alternative for the early detection and management of MIO. Methods32 β-thalassemia major (βTM) patients aged 11.5 ± 4 years and 32 healthy controls were recruited and underwent thorough clinical and laboratory assessments. The mid-level septal iron overload was measured through T1 mapping using a modified Look-Locker inversion recovery sequence with a 3 (3 s) 3 (3 s) 5 scheme. Septum was divided at the mentioned level into 3 zones corresponding to segments 8 and 9 in the cardiac segmentation model. Results21.9 % of βTM had clinical cardiac morbidity. The cut-off of T1 mapping of hepatic and myocardium to differentiate between the patients and control groups was ≤466 and ≥ 923 ms respectively. The T1 technique was able to detect 4 patients with high MIC, two of them were not detected by the T2* technique. There was a statistically significant correlation between the average T1 values of the studied zones in patients with βTM and the liver iron content (LIC), the T1 values within segment 8 of the liver, age of patients, the age at first transfusion, age of splenectomy and serum ferritin value. ConclusionThe addition of the T1 mapping sequence to the conventional T2* technique was able to increase the efficacy of the MIC detection protocol by earlier detection of MIO. This would guide chelation therapy to decrease myocardial morbidity.