Iron oxide nanoparticles (Fe3O4 NPs) have attracted great attention due to their extensive applications, which warranted their environmental concerns. Although recent advances have proposed the relevance of Fe3O4 NPs to cardiovascular disease, the intrinsic mechanisms underlying the effects of NPs remain indistinct. ApoE−/− mice were chosen as a long-term exposure model to explore the immanent association between respiratory exposure to Fe3O4 NPs and the development of cardiovascular diseases. Pulmonary exposure to 20 nm and 200 nm Fe3O4 NPS resulted in significant lung injury, and pulmonary histopathological examination displayed inflammatory cell infiltration, septal thickening and alveolar congestion. Intriguingly, liver iron deposition and variations in the hepatic lipid homeostasis were found in Fe3O4 NPs-exposed mice, eventually leading to dyslipidemia, hinting the potential cardiovascular toxicity of Fe3O4 NPs. In addition, we not only found that Fe3O4 NPs exposure increased aortic plaque area, but also increased M1 macrophages in the plaque, which yielding plaque vulnerability in ApoE−/− mice Of note, 20 nm Fe3O4 NPs showed enhanced capability on the progression of atherosclerosis than 200 nm Fe3O4 NPs. This study may propose the potential mechanism for adverse cardiovascular disease induced by Fe3O4 NPs and provide convincing evidence for the safety evaluation of Fe3O4 NPs.