The PI3K/Akt pathway is a key component in synaptic plasticity and neuronal survival. The aim of this work was to investigate the participation of the PI3K/Akt pathway and its outcome on different molecular targets such as glycogen synthase kinase 3β (GSK3β) and Forkhead box-O (FoxO) transcription factors during mild oxidative stress triggered by iron overload. The exposure of mouse hippocampal neurons (HT22) to different concentrations of Fe(2+) (25-200 μm) for 24 h led us to define a mild oxidative injury status (50 μm Fe(2+)) in which cell morphology showed changes typical of neuronal damage with increased lipid peroxidation and cellular oxidant levels but no alteration of cellular viability. There was a simultaneous increase in both Akt and GSK3β phosphorylation. Levels of phospho-FoxO3a (inactive form) increased in the cytosolic fraction of cells treated with iron in a PI3K-dependent manner. Moreover, PI3K and Akt translocated to the nucleus in response to oxidative stress. Iron-overloaded cells harboring a constitutively active form of Akt showed decreased oxidants levels. Indeed, GSH synthesis under oxidative stress conditions was regulated by activated Akt. Our results show that activation of the PI3K/Akt pathway during iron-induced neurotoxicity regulates multiple targets such as GSK3β, FoxO transcriptional activity, and glutathione metabolism, thus modulating the neuronal response to oxidative stress.