The clinical success of brain-machine interfaces depends on overcoming both biological and material challenges to ensure a long-term stable connection for neural recording and stimulation. Therefore, there is a need to quantify any damage that microelectrodes sustain when they are chronically implanted in the human cortex. Using scanning electron microscopy (SEM), we imaged 980 microelectrodes from Neuroport arrays chronically implanted in the cortex of three people with tetraplegia for 956-2246 days. We analyzed eleven multi-electrode arrays in total: eight arrays with platinum (Pt) electrode tips and three with sputtered iridium oxide tips (SIROF); one Pt array was left in sterile packaging, serving as a control. The arrays were implanted/explanted across three different clinical sites surgeries (Caltech/UCLA, Caltech/USC and APL/Johns Hopkins) in the anterior intraparietal area, Brodmann's area 5, motor cortex, and somatosensory cortex.Human experts rated the electron micrographs of electrodes with respect to five damage metrics: the loss of metal at the electrode tip, the amount of separation between the silicon shank and tip metal, tissue adherence or bio-material to the electrode, damage to the shank insulation and silicone shaft. These metrics were compared to functional outcomes (recording quality, noise, impedance and stimulation ability). Despite higher levels of physical degradation, SIROF electrodes were twice as likely to record neural activity than Pt electrodes (measured by SNR), at the time of explant. Additionally, 1 kHz impedance (measured in vivo prior to explant) significantly correlated with all physical damage metrics, recording, and stimulation performance for SIROF electrodes (but not Pt), suggesting a reliable measurement of in vivo degradation.We observed a new degradation type, primarily occurring on stimulated electrodes ("pockmarked" vs "cracked") electrodes; however, tip metalization damage was not significantly higher due to stimulation or amount of charge. Physical damage was centralized to specific regions of an array often with differences between outer and inner electrodes. This is consistent with degradation due to contact with the biologic milieu, influenced by variations in initial manufactured state. From our data, we hypothesize that erosion of the silicon shank often precedes damage to the tip metal, accelerating damage to the electrode / tissue interface. These findings link quantitative measurements, such as impedance, to the physical condition of the microelectrodes and their capacity to record and stimulate. These data could lead to improved manufacturing or novel electrode designs to improve long-term performance of BMIs making them are vitally important as multi-year clinical trials of BMIs are becoming more common.
Read full abstract