The IR spectral density of the high frequency stretching mode of weak H-bonded complexes involving Fermi resonances is studied within the linear response theory from a full quantum mechanical point of view: the anharmonic coupling between the high frequency X–H and the low frequency X–H⋯Y modes is treated inside the strong anharmonic coupling theory. Following Witkowski and Wójcik [A. Witkowski, M. Wójcik, Chem. Phys. 1 (1973) 9.], the Fermi resonance between the first excited state of the fast mode and the first harmonic of single or several bending modes is introduced. Besides, the direct relaxation involved by the fast and bending modes are incorporated, in the spirit of the reduced Green formalism, by aid of imaginary damping terms. The spectral density is obtained by the Fourier transform of the autocorrelation function of the dipole moment operator of the fast mode, in which time dependent terms appear that are solution of a set of coupled linear differential equations. It reduces in the special situation where the Fermi coupling is ignored to that obtained by Rösch and Ratner [N. Rösch, M. Ratner, J. Chem. Phys. 61 (1974) 3344.]. Furthermore, when the anharmonic coupling between the slow and fast modes is neglected, it reduces to the spectral density that may be obtained in the framework of the Giry et al. [M. Giry, B. Boulil, O. Henri-Rousseau, C.R. Acad. Sci. Paris 316 s.II (1993) 455; B. Boulil, M. Giry, O. Henri-Rousseau, Phys. status solidi (b) 158 (1990) 629.] approach. At last, it reduces to the Witkowski and Wójcik [A. Witkowski, M. Wójcik, Chem. Phys. 1 (1973) 9.] approach, when the relaxation disappears. A generalization to several Fermi resonances is also proposed. Numerical tests of the theory and physical discussions are reported in the following paper [D. Chamma, O. Henri-Rousseau, Chem. Phys. 229 (1998) 51].