Three multi-dentate coordinated chelates LnH2 (n = 1, 2, and 3), comprising a linked 1-(pyridin-2-yl)ethylbenzene and one pyrazolyl pyridine unit and showing either tridentate or tetradentate coordination modes, are successfully designed and synthesized. Dinuclear Ir(III) complexes [Ir(κ4-Ln)(μ-Cl)]2 bearing tetradentate coordinated κ4-Ln chelate (2a, n = 1; 2b, n = 2; 2c, n = 3) were next obtained en route from the respective intermediate [Ir(κ3-LnH)Cl(μ-Cl)]2 bearing the tridentate coordinated κ3-LnH chelate (1a, n = 1; 1b, n = 2; 1c, n = 3). Next, mononuclear Ir(III) complexes Ir(κ4-Ln)(thd) (3a, n = 1; 3b, n = 2; 3c, n = 3) with the tetradentate chelate were obtained upon treatment of 2 with 2,2,6,6-tetramethyl-3,5-heptanedione (thd)H in the presence of K2CO3. Concurrently, methylation of 2c in the presence of MeI and nBu4NCl afforded tridentate Ir(κ3-L3HMe)Cl3 (4) and, next, can be converted to tetradentate Ir(κ4-L3Me)Cl2 (5) by further cyclometalation and HCl elimination in refluxing diethylene glycol monoethyl ether solution. The Ir(III) complexes 3a, 4, and 5 were unambiguously identified using spectroscopic methods, together with single-crystal X-ray structural analyses on Ir(III) derivatives 3a, 4, and 5. Their photophysical and ,electrochemical properties and device fabrication properties were also investigated and compared with results from theoretical studies.
Read full abstract