*Presenting author The ability to genetically modify human induced pluripotent stem cells (hiPSCs), including the correction of gene defects by means of homologous recombination (HR) is of great interest regarding their potential for ex vivo gene therapy, especially in terms of rare pulmonary diseases like Cystic Fibrosis (CF). Genetic engineering of hiPSCs via customized designer nucleases has been shown to be significantly more efficient than conventional gene targeting, but still typically depends on the introduction of additional genetic selection elements. For the generation of CF patient-specific iPS cells, endothelial cells from the peripheral blood or fibroblasts from skin biopsies of CF-patients were isolated and reprogrammed through lentiviral overexpression of pluripotency factors. The CF-iPS cells, homozygous for F508del mutation, morphologically resemble human embryonic stem cells, express pluripotency markers and could be differentiated in vitro into derivatives of all three germ layers. For gene targeting approaches we developed a protocol for the establishment of efficient non-viral and selection-independent gene targeting in hESCs and hiPSCs. The protocol was applied to target the endogenous safe harbour locus AAVS1. Here, by using ZFNs and TALENs, targeting efficiencies of up to 1.6% were demonstrated for one hESC and two hiPSC lines, and stable transgenic PSC lines were generated by FACSorting. The high targeting efficiencies obtained allowed for direct PCR screening of correctly targeted clones by applying TALENs together with short single stranded oligonucleotide donors without any pre-selection (Merkert et al.). Targeting the underlying genetic defect in our CF iPSCs revealed targeted integration of the missing base pairs, as demonstrated in cell pools. The establishment of single cell clones is currently ongoing. The established targeting protocol will enable footprint less gene correction and transgene-independent isolation of mutation-corrected CF-iPSC clones which will facilitate disease modelling, drug screening and, ultimately, the generation of clinically useful transgenic iPSC derivatives. Reference: Merkert, S., Wunderlich, S., Bednarski, C., Beier, J., Haase, A., Dreyer, A.-K., Schwanke, K., Meyer, J., Gohring, G., Cathomen, T., and Martin, U. (2014). Efficient designer nuclease-based homologous recombination enables direct PCR screening for footprint less targeted human pluripotent stem cell clones. Stem Cell Reports 2, 107 – 118.
Read full abstract