The Belousov–Zhabotinsky (BZ) self-oscillation reaction is an important chemical model to elucidate nonequilibrium chemistry in an open system. However, there are only a few studies on the electrical behavior of pH oscillation induced by the BZ reaction, although numerous studies have been carried out to investigate the mechanisms by which the BZ reaction interacts with redox reactions, which results in potential changes. Needless to say, the electrical characteristic of a self-oscillating polymer gel driven by the BZ reaction has not been clarified. On the other hand, a solution-gated ion-sensitive field-effect transistor (ISFET) has a superior ability to detect ionic charges and includes capacitive membranes on the gate electrode. In this study, we carried out the electrical monitoring of self-oscillation behaviors at the chemoelectrical interface based on the BZ reaction using ISFET sensors, focusing on the pH oscillation and the electrical dynamics of the self-oscillating polymer brush. The pH oscillation induced by the BZ reaction is not only electrically observed using the ISFET sensor, the electrical signals of which results from the interfacial potential between the solution and the gate insulator, but also visualized using a large-scale and high-density ISFET sensor. Moreover, the N-isopropylacrylamide (NIPAAm)-based self-oscillating polymer brush with Ru(bpy)3 as a catalyst clearly shows a periodic electrical response based on the swelling–deswelling behavior caused by the BZ reaction on the gate insulator of the ISFET sensor. Thus, the elucidation of the electrical self-oscillation behaviors induced by the BZ reaction using the ISFET sensor provides a solution to the problems of nonequilibrium chemistry.
Read full abstract