Developing a high quality ceramic laser gain medium for solar directly pumped solid state lasers is essential, and yet the light conversion efficiency of the gain media for solar pumping remains a challenge. In this study, Ce and Nd ions, co-doped YAG transparent ceramics with theoretical transmittance and stable Ce3+ valent state were developed, and revealed that the absorbed visible light and light conversion efficiency in Ce,Nd:YAG ceramics were 3.98 times and 1.34 times higher than those in widely reported Cr,Nd:YAG ceramics, respectively. A concentration matching principle between Ce3+ and Nd3+ ions in YAG was established, and a higher Nd3+ ion doping concentration with a relatively low Ce3+ concentration was favorable to improve both the light conversion efficiency and emission intensity at 1064 nm of Ce,Nd:YAG ceramics. Energy transfer efficiency from Ce3+ to Nd3+ of the 0.3 at.%Ce,1.5at.%Nd:YAG ceramic reached as high as 61.71% at room temperature. Surprisingly, it was further promoted to 64.31% at a higher temperature of 473 K. More excited electrons at the upper energy level of Ce3+ ion under the high temperature accounted for this novel phenomenon. This study proposes a new design strategy of gain materials for solar directly pumped solid state lasers.
Read full abstract