Bis(2-phenylpyridine-C,N)(2,2′-bipyridine-N,N′) iridium(III) hexafluorophosphate ([Ir(ppy)2(bpy)][PF6]) is an ionic transition-metal complex (iTMC) of interest for use in light-emitting electrochemical cells (LEECs). Films of [Ir(ppy)2(bpy)][PF6] blended with the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]), deposited on different substrates, have been investigated for their morphological features, which are expected to affect the functional properties of the films, e.g., charge carrier transport. In literature, ionic liquids have been included in films of transition-metal complexes (TMCs) to increase the ion mobility and improve the performance of LEECs. A systematic comparison between the morphology of pure [Ir(ppy)2(bpy)][PF6] films and [Ir(ppy)2(bpy)][PF6] films containing [BMIm][PF6] has been carried out on different types of substrate, namely Au-patterned SiO2, indium tin oxide (ITO), and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)-modified ITO. Although [Ir(ppy)2(bpy)][PF6] forms smooth films on SiO2, ITO, and PEDOT:PSS-modified ITO substrates, addition of [BMIm][PF6] caused formation of vertical, discontinuous aggregates, which are expected to be detrimental to charge transport in LEECs with planar architecture.