The widespread use of glyphosate (Gly) poses significant risks to environmental and human health, underscoring the urgent need for its sensitive and rapid detection. In this work, we innovated by developing a novel material, ionic liquids, which formed the ionic probe “[P66614]2[2,3-DHN]-Cu2+ (PDHN-Cu2+)” through coordination with Cu2+. This probe capitalized on the distinctive fluorescence quenching properties of ionic liquids in the presence of Cu2+, driven by synergistic interactions between anions and cations. Glyphosate disrupted the PDHN-Cu2+ coordination structure due to its stronger affinity for Cu2+, triggering a “turn-on” fluorescence response. Impressively, PDHN-Cu2+ enabled the sensitive detection of glyphosate within just one minute, achieving a detection limit as low as 71.4 nM and excellent recovery rates of 97-103% in diverse samples. This groundbreaking approach, utilizing ionic probes, lays a robust foundation for the accurate and real-time monitoring of pesticides, employing a strategy based on synergism and competitive coordination.
Read full abstract