Abstract

Owing to the escalating threat of criminal activities and pollution aroused by 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP), development of a proficient sensor for the detection of these explosives is highly demanded. Herein, a water-soluble ionic liquid-tagged fluorescent probe, 1-ethyl-3-(3-formyl-4-hydroxybenzyl)-1H-benzimidazol-3-ium chloride (EB-IL) has been designed and synthesized for the detection of TNT and TNP in 100% aqueous medium. The EB-IL fluorescent probe displayed strong cyan-blue fluorescence at 500 nm which gets quenched upon the addition of TNT/TNP over other concomitant nitro-compounds. The distinct binding response of EB-IL towards TNT could be due to the formation of hydrogen bonding between the acidic proton of benzimidazolium (C2–H) and nitro group of TNT. Meanwhile, the selective binding of TNP with EB-IL could be due to the exchange of counter Cl− anion of EB-IL with picrate anion. The fluorescence quenching of EB-IL by TNT could be attributed to the resonance energy transfer (RET) and that of TNP is ascribed to the anion-exchange process. The developed sensor is extremely selective and sensitive towards TNT and TNP with high quenching constants of 1.94 × 105 M−1 and 2.32 × 106 M−1 and shows a lower detection limit of 159 nM and 282 nM, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call