Soft matter electrolytes could solve the safety problem of widely used liquid electrolytes in Li-ion batteries which are burnable upon heating. Simultaneously, they could solve the problem of poor contact between electrodes and solid electrolytes. However, the ionic conductivity of soft matter electrolytes is relatively low when mechanical properties are relatively good. In the present review, mechanisms of ionic conduction in soft matter electrolytes are discussed in order to achieve higher ionic conductivity with sufficient mechanical properties where soft matter electrolytes are defined as polymer electrolytes and polymeric or inorganic gel electrolytes. They could also be defined by Young’s modulus from about Pa to Pa. Many soft matter electrolytes exhibit VFT (Vogel–Fulcher–Tammann) type temperature dependence of ionic conductivity. VFT behavior is explained by the free volume model or the configurational entropy model, which is discussed in detail. Mostly, the amorphous phase of polymer is a better ionic conductor compared to the crystalline phase. There are, however, some experimental and theoretical reports that the crystalline phase is a better ionic conductor. Some methods to increase the ionic conductivity of polymer electrolytes are discussed, such as cavitation under tensile deformation and the microporous structure of polymer electrolytes, which could be explained by the conduction mechanism of soft matter electrolytes.
Read full abstract