Abstract

Solid-state lithium metal batteries (SSLMBs) with polymer electrolytes are promising due to enhanced safety and high energy density, but the low ionic conductivity of polymer electrolytes and the unstable interface of lithium metal anode hinder the development of SSLMBs. Herein, we propose a unique strategy to address these challenges by coupling ultrathin high-dielectricity Ca2Nb3O10 (CNO) nanosheets with PEO-based electrolyte. The interfacial polarization originating from the distortion of NbO6 octahedra along the vertical direction of CNO nanosheets is maximized and so the interaction between CNO and LiTFSI, which greatly supports the dissociation of LiTFSI and improves the ionic conductivity (2.0 × 10−4 S cm−1) of the composite polymer electrolyte, compared to that without CNO. The optimized interfacial polarization effect is thoroughly demonstrated by theoretical calculation and experimental results. Moreover, due to a homogeneous, robust and LiF-rich solid electrolyte interphase film with promoted Li+ ion transport being formed at the lithium metal interface, the superior cycling stability (90% capacity retention after 440 cycles at 0.5 C) and rate capability for LFP||Li full batteries are achieved. This design of composite polymer electrolyte with ultrathin dielectric nanosheet fillers demonstrates a new approach to the development of high-performance polymer electrolytes for SSLMBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call