Simple SummaryBreast, colon, and prostate cancer account for about a third of cancer cases and a fifth of cancer deaths. At the molecular level, one reason for the development of cancer is the dysfunction or altered co-regulation of cellular proteins. In this study, we focused on the co-regulation of ion channels, specifically the prominent Ca2+ ion channel Orai1 and the Ca2+ activated K+ ion channel SK3. It has recently been reported that their interplay promotes the growth of breast and colon cancer cells, but the molecular determinants for their co-regulation have remained elusive. In this study, we set out to characterize their interplay and the crucial regions therefore required. Moreover, we found that the function of prostate cancer cells is also controlled by the interplay of Ca2+ and the Ca2+ sensitive K+ channels. Our findings provide a better understanding of the co-regulation of these ion channels, which could be used in the future for the development of novel therapeutics.The interplay of SK3, a Ca2+ sensitive K+ ion channel, with Orai1, a Ca2+ ion channel, has been reported to increase cytosolic Ca2+ levels, thereby triggering proliferation of breast and colon cancer cells, although a molecular mechanism has remained elusive to date. We show in the current study, via heterologous protein expression, that Orai1 can enhance SK3 K+ currents, in addition to constitutively bound calmodulin (CaM). At low cytosolic Ca2+ levels that decrease SK3 K+ permeation, co-expressed Orai1 potentiates SK3 currents. This positive feedback mechanism of SK3 and Orai1 is enabled by their close co-localization. Remarkably, we discovered that loss of SK3 channel activity due to overexpressed CaM mutants could be restored by Orai1, likely via its interplay with the SK3–CaM binding site. Mapping for interaction sites within Orai1, we identified that the cytosolic strands and pore residues are critical for a functional communication with SK3. Moreover, STIM1 has a bimodal role in SK3–Orai1 regulation. Under physiological ionic conditions, STIM1 is able to impede SK3–Orai1 interplay by significantly decreasing their co-localization. Forced STIM1–Orai1 activity and associated Ca2+ influx promote SK3 K+ currents. The dynamic regulation of Orai1 to boost endogenous SK3 channels was also determined in the human prostate cancer cell line LNCaP.